FLAME FacilityFlammability Assessment of Materials for Exploration

Types of investigations that can be accommodated

Ignition and flammability study of spacecraft materials in practical geometries and realistic atmospheric conditions.

Material Ignitability

- Spark ignition to support EVA suit design.
- · Ignition studies for selection of cabin materials (similar to current NASA test).

Fire Growth and Spread

Improved understanding of early fire growth behavior. Validation of NASA materials flammability selection 1-g test protocols for low-gravity fires.

Validation of material flammability numerical models.

Fire Suppression

Suppression of burning materials by diluents, flow reduction and venting.

Facility Capabilities / Approach:

- Develop FLAME facility (CIR insert and avionics) to support multiple solid-material combustion and fire suppression studies
- **Utilize Combustion Integrated Rack (CIR)**
- Support multiple investigations using common infrastructure:
 - Common interfaces and flow control
 - Removable test sections and sample holders
 - Removable ignition system

Point of Contact:

- David L. Urban, NASA-GRC, (216) 433-2835
- Gary A. Ruff, NASA-GRC, (216) 433-5697

CIR Facility on ISS

1-g simulation of Mir SFOG fire

Rationale:

Material Control is the first stage of spacecraft fire safety.

NASA has a long history of material controls but they are entirely based on 1-q understanding and data.

Future missions are expected to be in more hazardous atmospheric conditions.

Low-gravity testing has shown that current NASA material qualification methods may not be as conservative as they are believed to be.

6 PI's have been selected in a recent NRA to study material flammability with an anticipated down select to about 4 flight investigations.

A facility is needed to provide flight access for these investigations as they cannot be studied in ground-based facilities.